Preliminary communication

ORGANOMETALLIC COMPOUNDS

XX^{*}. STEREOCHEMISTRY IN THE OXIDATIVE CYCLIZATION OF 1,1'-BIS(1-HYDROXYALKYL)FERROCENE WITH OXYGEN

.

MASAO HISATOME, TAKAYUKI NAMIKI and KOJI YAMAKAWA Faculty of Pharmaceutical Sciences, Science University of Tokyo, Ichigaya-funagawaramachi, Shinjuku-ku, Tokyo 162 (Japan) (Received July 2nd, 1975)

Summary

Oxidative cyclization of 1-(1-hydroxy-1-phenylethyl)-1'-(1'-hydroxy-1'phenylpropyl)ferrocene with molecular oxygen and acid proceeded stereoselectively. Some reactions to confirm the configuration of the products are described.

It has been found that reaction of (1-hydroxyalkyl)ferrocene derivatives with molecular oxygen in the presence of acidic catalysts afforded 1,2-dioxane derivatives (peroxides) of ferrocene and their derivatives [1-4]. Further investigations [5] suggest that the oxidative reaction proceeded by a mechanism different from that of usual reactions of dienophiles with singletstate oxygen producing peroxides [6]. We now describe that the oxidative cyclization of 1-(1-hydroxy-1-phenylethyl)-1'-(1'-hydroxy-1'-phenylpropyl)ferrocene (I) with molecular oxygen and acid gave stereoselective reaction products.

Treatment of the diol I (350 mg) with oxygen gas and 6N HCl afforded several (2-methyl)-[4]ferrocenophanes, benzoylferrocene (6 mg) and other unknown products (20 mg). The reaction products were separated into an insoluble crystalline compound (II, 135 mg), in ethyl acetate and a soluble fraction. The latter was column-chromatographed on alumina to be separated into IIIa (3 mg), IV (10 mg), Va (20 mg), Vb (13 mg) and other compounds (Scheme 1).

The peroxide II had a composition of $C_{27}H_{24}O_2$ Fe (M^+ , 436.1107), and a methyl signal at δ 0.94 d^{**}. In order to confirm the structure of those products some reactions were carried out (Scheme 2). Rearrangement of II

^{*}For part XIX see ref. 4.

^{**} The molecular weights of all other compounds in this paper also were confirmed by highresolution mass spectrometry. PMR spectra were measured at 100 MHz in CDCl₃.

SCHEME 2

with Al₂O₃ afforded the ketal IV (ν (C-O-C) 1060-960 cm⁻¹, δ 0.53 (3H, d, Me)). IV was treated with EtOH-aq.HCl and then with TsOH to give the enone VII (ν (C=O) 1655 cm⁻¹, ν (C=C) 1625 cm⁻¹), in which both signals of methyl (δ 1.95) and methylene protons (δ 3.52) appeared as singlets. The formation of the enone VII indicates that the precursor IV was the 2-methyl but not the 3-methyl isomer.

Both diols Va and Vb have the same configuration as the peroxide II

with respect to the 1- and 4-carbons on the bridge, because their IR spectra in highly diluted solutions (CCl₄, 3.8×10^{-4} mol/l) showed strong intramolecular hydrogen bonding bands at 3412 and 3395 cm^{-1} , respectively. Reduction of II gave the diol Va (δ 1.03 (3H, d, Me)), which was converted with TsOH into the tetrahydrofuran IIIa (ν (C-O-C) 1040-980 cm⁻¹, δ 0.63 (3H, d, Me)). On the other hand, dehydration of the other bridging diol Vb $(\delta 0.73 (3H, d, Me))$ under the same conditions as the above reaction Va gave the tetrahydrofuran IIIb (ν (C-O-C) 1040-980 cm⁻¹, δ 1.20 (3H, d, Me)), unisolated in the oxidation reaction of I, together with the bridging butadiene VIII (δ 1.70 (3H, s, Me), δ 5.85 (1H, s, olefinic methine)). When the configuration of the tetrahydrofuran is examined with a molecular model, diamagnetic anisotropy of a benzene ring for the methyl group at the 2-position in the *cis*-configuration derivative is much more effective than for that in the trans isomer. The tetrahydrofuran IIIa in which the methyl protons appeared at an unusually high field (δ 0.63) was assigned to the *cis* isomer. In the dehydration of Va the butadiene VIII was not found, but only IIIa was afforded in a 93 % yield, as described above. This suggests a blocking effect of the *cis*-methyl group for attack of the reagent to the OH group at the 1-position; the reaction behaviour also supports the *cis* configuration of IIIa. Subsequently, it was confirmed that II, Va and IV also are in the *cis* form.

The results indicate that the cyclization of I with molecular oxygen proceeded stereoselectively; each total yield of *cis* and *trans* configuration products was ca. 49 % and 4 %, respectively.

Further experiments are in progress to investigate the mechanism of oxidative stereoselective cyclization.

References

- 2 M. Hisatome, S. Minagawa and K. Yamakawa, J. Organometal. Chem., 55 (1973) C82.
- 3 M. Hisatome, S. Minagawa and K. Yamakawa, pres. 6th Symp. Chemistry of Non-benzenoid
- Aromatic Compounds, Fukuoka, October 15th, 1973: Abstr. papers, p. 186.
- 4 M. Hisatome, S. Koshikawa and K. Yamakawa, Chem. Lett., (1975) 189.
- 5 The authors' unpublished results.
- 6 R.W. Denny and A. Nichon, Org. React., 20 (1973) 133.

¹ M. Hisatome and K. Yamakawa, J. Chem. Soc. Chem. Commun., (1973) 199.